A New Foundation for Finitary Corecursion and Iterative Algebras
نویسندگان
چکیده
This paper contributes to a theory of the behaviour of “finite-state” systems that is generic in the system type. We propose that such systems are modeled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if the given endofunctor preserves monomorphisms then the LFF always exists and is a subcoalgebra of the final coalgebra (unlike the rational fixpoint previously studied by Adámek, Milius, and Velebil). Moreover, we show that the LFF is characterized by two universal properties: (1) as the final locally finitely generated coalgebra, and (2) as the initial fg-iterative algebra. As instances of the LFF we first obtain the known instances of the rational fixpoint, e.g. regular languages, rational streams and formal power-series, regular trees etc. And we obtain a number of new examples, e.g. (realtime deterministic resp. non-deterministic) context-free languages, constructively S-algebraic formal power-series (and any other instance of the generalized powerset construction by Silva, Bonchi, Bonsangue, and Rutten) and the monad of Courcelle’s algebraic trees.
منابع مشابه
On Corecursive Algebras for Functors Preserving Coproducts
For an endofunctor H on a hyper-extensive category preserving countable coproducts we describe the free corecursive algebra on Y as the coproduct of the final coalgebra for H and the free Halgebra on Y . As a consequence, we derive that H is a cia functor, i.e., its corecursive algebras are precisely the cias (completely iterative algebras). Also all functors H(−) + Y are then cia functors. For...
متن کاملA New Foundation for Finitary Corecursion
This paper contributes to a theory of the behaviour of “finite-state” systems that is generic in the system type. We propose that such systems are modeled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if...
متن کاملA New Foundation for Finitary Corecursion - The Locally Finite Fixpoint and Its Properties
This paper contributes to a theory of the behaviour of “finite-state” systems that is generic in the system type. We propose that such systems are modeled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if...
متن کاملFrom Iterative Algebras to Iterative Theories
Iterative theories introduced by Calvin Elgot formalize potentially infinite computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with “iterative algebras”, i. e., algeb...
متن کاملFrom Iterative Algebras to Iterative Theories (Extended Abstract)
Iterative theories introduced by Calvin Elgot formalize potentially infinite computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with “iterative algebras”, i. e., algeb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.08070 شماره
صفحات -
تاریخ انتشار 2018